Efficient algorithms for computing the largest eigenvalue of a nonnegative tensor
نویسندگان
چکیده
Consider the problem of computing the largest eigenvalue for nonnegative tensors. In this paper, we establish the Q-linear convergence of a power type algorithm for this problem under a weak irreducibility condition. Moreover, we present a convergent algorithm for calculating the largest eigenvalue for any nonnegative tensors.
منابع مشابه
On the largest eigenvalue of a symmetric nonnegative tensor
In this paper, some important spectral characterizations of symmetric nonnegative tensors are analyzed. In particular, it is shown that a symmetric nonnegative tensor has the following properties: (i) its spectral radius is zero if and only if it is a zero tensor; (ii) it is weakly irreducible (respectively, irreducible) if and only if it has a unique positive (respectively, nonnegative) eigenv...
متن کاملLinear convergence of an algorithm for computing the largest eigenvalue of a nonnegative tensor
An iterative method for finding the largest eigenvalue of a nonnegative tensor was proposed by Ng, Qi, and Zhou in 2009. In this paper, we establish an explicit linear convergence rate of the Ng–Qi–Zhou method for essentially positive tensors. Numerical results are given to demonstrate linear convergence of the Ng–Qi–Zhou algorithm for essentially positive tensors. Copyright © 2011 John Wiley &...
متن کاملOn the nonnegative inverse eigenvalue problem of traditional matrices
In this paper, at first for a given set of real or complex numbers $sigma$ with nonnegative summation, we introduce some special conditions that with them there is no nonnegative tridiagonal matrix in which $sigma$ is its spectrum. In continue we present some conditions for existence such nonnegative tridiagonal matrices.
متن کاملFinding the Largest Eigenvalue of a Nonnegative Tensor
In this paper we propose an iterative method for calculating the largest eigenvalue of an irreducible nonnegative tensor. This method is an extension of a method of Collatz (1942) for calculating the spectral radius of an irreducible nonnegative matrix. Numerical results show that our proposed method is promising. We also apply the method to studying higher-order Markov chains.
متن کاملA mathematically simple method based on denition for computing eigenvalues, generalized eigenvalues and quadratic eigenvalues of matrices
In this paper, a fundamentally new method, based on the denition, is introduced for numerical computation of eigenvalues, generalized eigenvalues and quadratic eigenvalues of matrices. Some examples are provided to show the accuracy and reliability of the proposed method. It is shown that the proposed method gives other sequences than that of existing methods but they still are convergent to th...
متن کامل